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We simulate the one-dimensional quantum L~ouvtlle-Potsson system usmg the splitting 
scheme and the accompanying double Fourier transformation in x and p space. This code is 
used to study the quantum effects in the one-dimensional electrostatic plasma, i.e., the well- 
known nonlinear Landau damping and two stream instability problems. ( 1991 Academic 

Press. Inc. 

1. INTRODUCTION 

The Wigner function introduced by E. Wigner Cl] to calculate the quantum 
correction to the thermodynamical equilibrium was used successfully to study the 
theory of the quantum plasma by Klimontovich and Silin [2]. Even though the fact 
that it can have negative values makes a simple probabilistic interpretation of the 
Wigner function difficult [3], it is widely accepted that it can be used as a 
convenient mathematical tool to obtain the quantum corrections to the classical 
results [4]. 

In this paper we use the quantum Liouville equation-which is the time evolution 
equation of the Wigner function-in connection with the Poisson equation to see 
how the quantum effects change the collective plasma oscillations and especially 
how they change the phase space evolution of the one-dimensional electrostatic 
plasma. In this paper, we will consider only the quantum diffraction effect, i.e., we 
will not take into acount the second important quantum effect, the spin. 

Because one cannot yet solve this quantum Liouville-Poisson system, we resort 
to the numerical simulation. Although particle codes are currently used in various 
classical problems, they are not well suited to look at the phase space evolution 
because of the limited number of particles used. In the quantum case, even the con- 
ception of particle codes is difficult to imagine and in this paper we use an Eulerian 
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code which integrates the quantum Liouville equation directly in phase space. The 
method used is the well-known splitting scheme [S, 61. We will show that if we 
separate the x and p dynamics, then it can be easily solved by applying the double 
Fourier transformation in I and p, respectively. We compare the results with a 
linear theory to assure the validity of the simulation method. 

Section 2 describes the quantum Liouville equation and the associated linear 
theory. In Section 3 we present the numerical method. In Section 4 we show the 
simulation results for the nonlinear Landau damping and the two stream instability 
problems. In Section 5 we conclude. 

2. QUANTUM LIOUVILLE EQUATION AND LINEAR THEORY 

2.1. Quantum Liouville Equation 

Although the obtention of this equation is given in many papers, we sketch the 
main steps for the completeness of this paper. The Wigner distribution function 
corresponding to the pure quantum states is defined as 

.fJx, P> t)=+J” +* ( 
z 

x-i,t)$(x+a,t)exp(-i$)did; (1) 

where the wave function $ satisfies the Schrodinger equation 

x is the spatial position, p the conjugate momentum, and k = h/2z is the Planck’s 
constant. From the definition (1) we can obtain the evolution equation of ,f,? with 
the aid of (2) [4,7]. This equation is 

The self-consistent potential 4 is given by the Poisson equation 

d*d s + K -- 
dx2 - f,,.dp- 1, ~- 3c 

where we have put s0 = n, = e = 1 with n, the density of the motionless neutralizing 
background. 

The most important difference between (3) and the classical Liouville equation is 
the nonlocality of the potential action. In the classical limit h + 0, the exponential 
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term in the integral kernel of (3) is violently oscillating and only a very small region 
around d = 0 gives a significant contribution. Consequently we can use the 
approximation 

Then after a double integration in (3), we get the classical Liouville equation 

2f P 2f 
z+mz+Ef=O. 

8P 
(5) 

Hence (3) may be regarded as the quantum Liouville equation. 

2.2. Quantum Dispersion Relation 

All the linear phenomena of the classical plasma are completely described by the 
dielectric constant calculated by linearizing (5). Following the same procedure as 
the classical case, we can calculate the quantum dielectric constant which plays the 
same role as the classical one. We follow the demonstration given in [7]. 

We linearize (3) putting f,V = F(a) +,fi(, Y, u, t), where f, is considered as a small 
perturbation around a homogeneous F(u). It must be pointed out that because of 
the nonlinear relation connecting $ and fw, it is impossible to consider the strictly 
equivalent linear problem in the Schrodinger formalism. 

After linearizing (3) we take the Fourier transform over x. Thus we obtain (k is 
the Fourier conjugate of X) 

.[exp(ik$-exp(-iki)]&k)F(p’)dp’dA=O. 

The integration over A gives two Dirac function h S(p + hk/2 - p’) and 
h S(p - kk/2 - p’). Subsequently, the integration over p’ can be done easily and we 
have 

$! - ik$, + E(k, t) 
F(P++‘(P-;)=~ 

Ak (6) 

Equation (6) with the Poisson one gives, after a simple calculation, the quantum 
dielectric constant 

E(k, w) = 1 + 

where wz = n0e2/c0m is the plasma frequency. 
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The dispersion relation can be obtained by putting s(k, w) = 0. Now supposing 
that fik/mu,, is small we do the Taylor development of F in the integral kernel of 
(13). Neglecting the terms higher than (hklmv,,)‘, we obtain 

(8) 

The first two terms are the familiar classical terms which result in the linear disper- 
sion relation w2 = 0: + 3k2vf,, + 6k4v;‘,lo~, where u,,, is the thermal velocity of the 
system. The third one contains the quantum correction to the linear plasma oscilla- 
tion. With the binomial development of (1 - ku/o)-’ and following the traditional 
procedure, we arrive at the desired relation: 

co2 = 0; + 3k2u;, + 
6k4v;‘, h2k4 
-+- 

co: 4m2’ 

From (9), we can give a little analysis about the magnitude of the quantum correc- 
tion. Equation (9) can be rewritten in the form u’/w~ = 1 + 3k21i + 6k4Ai + 
H2k4AL/4, where i,, = v~,,/o~ is the Debye length and H = !i/mvlhAD. 

In this form, it is easy to see that the quantum correction can be greater than the 
classical k4 correction. A priori, the validity of the expansion leading to Eq. (9) 
requests that iik/mu,, G 1 and forbids the quantum correction to be larger than the 
classical k2 term. 

Nevertheless, the cold plasma case (u,,, -+ 0) can be handled directly (without any 
expansion) in Eq. (8) assuming F(p) = 6(p) and gives the relation 

co2 = co: + ti2k4/4m2. 

We see consequently, that with a small u,,,, the quantum correction can be the 
dominant one. 

One can calculate the quantum correction term also by different method. It was 
shown in a little bit different language in [8]. We start from the linearized 
Schrodinger equation. Putting Q = $,, $ = 1 + 1c/, into (2) and keeping only the 
first-order term, we obtain 

$0 = 1 corresponds to an unperturbed F(p) = 6(p). 
Assume that $i - exp(i(wt - kx)). Then from ( 10) and its complex conjugate 

form we obtain 
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Put these two terms into the relation n,(k, o) = $,(k, w) + $:(k, w). Thus 

n,(k,o)=d 
fi2k2/m 

’ fi202 - h2k4/4m2’ 
(11) 

From (11) and the Fourier transformed form of the Poisson equation, we obtain 
easily 

h2k4 
co2=o;+----;-. 

4m- 
(12) 

Comparing (9) and (12), we see that for long wavelengths, the quantum and 
thermal corrections add independently of each other. 

Thus the quantum correction term calculated by two different methods turns out 
to be the same. This can assure the validity of the quantum dielectric constant 
formalism. 

The quantum correction is a minor one for small k, but for reasonable k and fi, 
the effect becomes non-negligiable. But practically, we will have difficulty having k 
small enough (for the validity of the long wavelength approximation) and ZI large 
enough (to detect the quantum correction). Having used too many approximations 
in deducing (9) the frequency calculated from (9) must not be quite exact in reality. 
So to compare the simulation results with the theoretical values, we prefer to 
calculate the theoretical w  directly from (7). We will come back to this point in 
Section 4. 

3. NUMERICAL METHOD 

We want to solve the system (3), (4) for periodic boundary conditions in x. The 
main point of the code is the use of the splitting scheme and the accompanying 
double Fourier transformation successively and respectively in x and p directions. 
This scheme was used successfully to simulate the classical Vlasov-Poisson system 
and is second order in AT [S, 91. 

Rather than solving Eq. (3) as a whole, this scheme splits the equation into two 
parts, the free particle part and the interaction part. Now assume that the potential 
is given as a Dirac function in time. See [S] for a discussion of the connexion 
between this ansatz and the splitting scheme, 

6*(x, t) = d(x, t) ATZ,, d(f - t,,), where t, = (n + $) AT. 

Denoting t; and t,’ , respectively as the time before and after the Dirac pulse, the 
time interval (n AT, (n + 1) AT) can be divided into three steps: 

(a) (n AT< t < trip ). We have the free particle movement 
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performing the Fourier transformation in X, we obtain the solution 

f,,.(k,v, t;)=f,,(k,v,nAT)exp(-ikvAT/2). (13) 

(b) (t = t,). This corresponds to the interaction part and we can neglect the 
free particle motion while the potential is working. Thus we have 

performing the Fourier transform in p space (A is the Fourier conjugate of p), we 
obtain the solution 

Ox, 4 t,’ ) =fJx, 2, t,; ) exp {-$(x+;. t,;>-,(x-y, t,;>]AT}. (14) 

At this point, we must make two remarks. The Fourier transform on p for a 
given x (i.e., applied in the frame of the splitting method) turns the treatment of the 
interaction terms into a problem nearly as simple as the classical view; this is really 
the method to treat the quantum Liouville equation. The nonlocal character of the 
quantum interaction problem appears in a very clear way. Although we enforce the 
concept of an entity present at a point x, v of the phase space, the distribution func- 
tion of these quasi-particles at a given x interact with the entire fields. Even as a 
mathematical tool, the concept of quasi-particle is not tenable. 

(c) (t,: < t < (n + 1) AT). This is again the free particle motion and we repeat 
step (a) starting from f(x, v, t,: ). 

Thus repeating the successive shifts 

(a) The free particle motion from n AT to t,, : 

fdx, u, n A 7’) A f,,.( k, v, n A T) 2 exp( - ikv ATJ2) 

- f,,.(x, u, t,; ); 

(b) Dirac pulse at t = t,,: 

fw(x, VT t,; ) ---f=-+ f,,,(x, I”, t,; ) 

Lexp(-t[rn(x+y,t,;)---((x-?.I;)]) 

a fJx, v, t,+ ) 

(c) again step (a) from rz to (n+ 1) AT, 
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We can follow the time evolution off,.. 
A brief dimensional analysis is necessary to simulate Eq. (14). In our simulation 

we normalize the length x by the Debye length A”. So let X=x/i,. Since 
the dimension of 1. is [A] = [mv] ~ ‘, we put n = j-mu,,,. Thus, .Y + M/2 = 
i-,(X+ (,4/2)(h/mu,,j.,)). Since the dimension of k is [ti] =ML’T-‘, we can 
correctly normalize fi by mnL’,,, /In. In fact we always take m = P,,, = j*,, = o,, = 1. 

4. SIMULATION RESULTS 

4.1. Simulation of the Landau Damping in the Nonlinear Regime 

With the code mentioned above, we are going to study how the quantum effects 
change the nonlinear Landau damping phenomenon. The initial condition is 

f,,.(x, u, O)=F(u)[l +a cos k,x], 

where F(u) = (27~)~ ‘,2 exp( -02/2), z characterizes the strength of the perturbation, 
and k, = 2x/L with L the system length. We know very well what happens classi- 
cally [S, lo]. If M is small enough, then the electric field created is also very small 
and the convective term of the Vlasov equation L’ df/S.u homogenizes it. So the 
electric field damps away. This is the linear Landau damping. But if the electric 
field excited is large enough such that the nonlinearity becomes important, then 
there appears a hole structure in the phase space. This hole structure makes 
possible an equilibrium between the convective term and the force term E Sf/& 
that drives collective oscillation of the plasma, so after a transient time, the excited 
wave subsists during very long time without damping away. This is the nonlinear 
saturation of the Landau damping. 

In Fig. 1 we present classical phase spaces to help the comparison. It shows the 
phase space evolution corresponding to k, = 0.3 and x = 0.05. Only the upper part 
(v > 0) is represented using grey points and the region f > 0.02 is represented by 
completely black part. This allows us to concentrate our attention to the interesting 
region u > 3. 

One observes the formation of a hole at the velocity approximately equal to the 
phase velocity vti = w,lk, where wk is the linearized frequency associated to the 
wave number k. This hole formation is the origin of the saturation of the Landau 
damping and seems to be the building block of the nonlinear theory for the one- 
dimensional electrostatic plasma. 

The quantum version of the phase space is shown in Fig. 2. The simulation was 
done for the parameters k, = 0.4, cz = 0.2, and /i = 8. There are two figures under 
each time indication. The left one represents the positive part of ,f,C and the right 
one corresponds to the negative f,,,. We do not see any more the formation of a 
hole. As is clear from Eq. (14) the potential acts non-locally, so the concept of a 
trapping by one monochromatic wave looses its sense. 

As a matter of fact, the convective term can be interpreted in a classical way as 

SRI,94 2-K 
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FIG. 1. Classical phase space evolution of the Landau damping. The black region is forf> 0.02 and 
k,i, = 0.3, d( = 0.05. 
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FIG. 2. Quantum phase space evolution for h = 8. Of the two figures under each time indication, the 
left one represents the positive part of the Wigner function, and the right one shows the negative part, 
The black region is for f> 0.02 and k,in = 0.4, a = 0.2. 
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bringing homogenisation through the dispersion of the velocity of the quasi-par- 
ticles. We see indeed that the horizontal strips which characterize the effect of this 
term become more and more lilamented while the field goes on time-decreasing. 

The validity of this simulation result must be backed by the comparison with the 
theory. Using the Fried and Conte function [ 111, we can calculate the collective 
oscillation frequency predicted by the linear theory from Eq. (7). Using the formula 
(9) we can get a quick evaluation, but it is too rough an approximation to be used. 
Our quantum dispersion relation is obtained by Eq. (7) putting E = 0. Now insert 
F(u) = (271) ~ l’* exp( - r*/2); then we obtain 

where 

(15) 

(16) 

Z can be calculated exactly and solving (15) for the complex o = w, + ijt we can 
obtain the frequency o, and the damping rate y. Figure 3 shows the electric field 
evolution for k0 = 0.4, r = 0.2. The upper one is the classical result and the lower 
one is that corresponding to Fig. 2. It shows clearly that the hole formation is 
destroyed by the quantum effect and the linearized result is obtained. The frequency 
and the damping rate are measured as o, = 1.46 wP and “J = -0.153. The theoretical 
values calculated from (15) are o, = 1.489 wP and y = -0.1516. The difference 
comes from the large perturbation CI taken. We have done the same simulation with 
a smaller perturbation (CI = 0.1) and we obtain o, = 1.48 w, and y = -0.1526 which 
agree very well with the theory. The classical frequency of Fig. 3 is o = 1.24 0,. The 
presence of the quantum effect is quite evident in this case. 

We have found in the classical case, that the disappearance of the damping 
coincides with the formation of a hole. Such a hole may be visualized as a structure 
having a given volume in phase space. When #i exceeds this volume, quantum 
mechanics forbids the existence of such a structure and consequently, we obtain an 
indirect check that indeed the saturation of Landau damping, in the classical case, 
was connected to the appearance of the hole. 

4.2. Simulation of the Two Stream Instability 

Our next simulation concerns the two stream instability. This is quite an old 
problem that has been abundantly studied theoretically and numerically. Its 
asymptotic state is a function of the energy only with phase space configuration 
characterized by a hole in the center (v = 0). This is called the BGK equilibrium 
with a space period L and is a steady state solution of the Vlasov equation. Recent 
study showed that BGK equilibrium with more than one period, i.e., with more 
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FIG. 3. Classical and quantum evolution of the electrostatic field for the Landau damping problem. 
k,l., =0.4, x =0.2. 

I’ 

.l 

FIG. 4. Linear two stream instabiity growth rate as a function of the wavenumber k. The solid curve 
IS the classical one. The dashed curve is for h = 2 and the starred one is for h = 10. 
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than one hole is unstable and tends toward the stable one hole structure by the 
coalescence between the holes [9]. 

The initial condition is 

.L(x, u, 0) = a (1 + 50’) exp( - u*/2)( 1 + x cos k,x), 
J;E 

a= l/6 

with CI = 1 * 10e3. The quantum dispersion relation is given by 

From Eq. (17) we can calculate the growth rate of the two stream instability for a 
given k and h. This is shown in Fig. 4. We observe that the quantum effect 
diminishes the growth rate and the wave number of marginal mode (the maximum 
wave number of the instability). We see that the classical marginal mode is 
k, = 0.816 which results in the marginal wave length L = 7.69. For our simulation 
we choose the system length L = 30.78 and perturb over the fundamental mode 
k, = 271/L = 0.204. From the y(k) curve (Fig. 4) we see that among the four unstable 
modes possible with this length system, the second one exhibits the largest growth 
rate, so we can expect that initially a 2-hole structure will appear. 

Figure 5 shows the phase space evolution for the classical two stream instability. 
The initial two holes coalesce rapidly into one hole. Figure 8 a is the corresponding 
field energy. Figure 6 shows the quantum effect for Gi = 8. The instability starts up 
at a much later time, or said otherwise, the linear state is prolonged much longer. 
This is clearly shown in the field evolution Fig. 8b. The growth rate obtained from 
Eq. (17) is y = 0.0757. The simulation result Fig. 8b gives y = 0.071. If we increase 
the quantum action fi to 15, then the theory gives w  = 1.221 w, and 7 = -0.0029 
whcih means that there will be no instability and the plasma oscillates at the linear 
frequency. The simulation verifies this prediction. We pushed the calculation up to 
oP T = 200, but Fig. 7 shows that really nothing happens. Figure 8c resembles a 
typical linear nearly undamped problem. We measure the frequency o = 1.22 w,, 
and 7 = -0.0025. So they agree very well with the theoretical values. 

We observed the same phenomena as in the preceeding Landau damping 
problem. The existence of an instability implies a hole, the volume of which is 
roughly speaking given by the product of the inverse wavenumber of maximum 
growth and the value of p for whichf(p) is maximum. Again if fi exceeds this value, 
then the instability does not appear. Of course, for long enough plasma, we can 
always have a hole, the volume of which is big enough to exceed h, and an 
instability survives, but for longer and longer wavelengths. This explains the curves 
of Fig. 4. 
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FIG. 5. Phase space evolution of the classical two stream instability. 
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FIG. 6. Same as Fig. 5 for h = 8. For most of the time .f remains positive and consequently the 
“negative frames” are empty. But at time t= 100, a negative value appears (two little segments of live 
points each). 
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T = 200 

FIG. 7. Same as Fig. 5 for h = 15. Note that the Wigner function is always positive. 
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FIG. 8. Classical and quantum field evolution of the two stream instability 
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5. CONCLUSION 

In this article we have shown that the use of the splitting scheme and the accom- 
panying double Fourier transformation in x and u space can successfully simulate 
the one-dimensional quantum Liouville equation. This code was used to study the 
quantum effects in the nonlinear Landau damping and the two stream instability 
problem. In the former problem we found that the quantum effect destroys the hole 
formation in phase space and consequently the nonlinear stabilization behaviour in 
the plasma disappears. If the quantum action h becomes larger, we get a strong 
linear damping behaviour. So the role of the hole in constructing nonlinear theory 
is shown to be very important. The simulation of the two stream instability con- 
firms this result. For large ti, the instability starts at a later time and the linear 
behaviour is prolonged. For even larger h, the quantum effect overcomes the 
instability and we obtain a gentle linear Landau damping. 
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